Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns.
نویسندگان
چکیده
Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a scale factor. EIT surface potential measurements are then used to scale the reconstructed image in order to find the true conductivity values. This process is iterated until a stopping criterion is met. Several simulations are carried out for opposite and cosine current injection patterns to select the best current injection pattern for a 2D thorax model. The contrast resolution and accuracy of the proposed algorithm are also studied. In all simulation studies, realistic noise models for voltage and magnetic flux density measurements are used. It is shown that, in contrast to the conventional EIT techniques, the proposed method has the capability of reconstructing conductivity images with uniform and high spatial resolution. The spatial resolution is limited by the larger element size of the finite element mesh and twice the magnetic resonance image pixel size.
منابع مشابه
Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT).
Magnetic resonance-electrical impedance tomography (MR-EIT) was first proposed in 1992. Since then various reconstruction algorithms have been suggested and applied. These algorithms use peripheral voltage measurements and internal current density measurements in different combinations. In this study the problem of MR-EIT is treated as a hyperbolic system of first-order partial differential equ...
متن کاملExperimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction.
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Mi...
متن کاملElectrical Impedance Tomography (EIT) and Its Medical Applications: A Review
This paper reviews the principles of Electrical Impedance Tomography (EIT), different types of current patterns and reconstruction algorithms to assess its potential in medical imaging. A current injection pattern in EIT has its own current distribution profile within the subject under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability....
متن کاملInduced current magnetic resonance-electrical impedance tomography.
Magnetic resonance-electrical impedance tomography (MR-EIT) is a conductivity imaging method based on injecting currents into the object. In this study, a new MR-EIT method, whereby currents are induced inside the object by using external coils, is proposed. This new method is called induced current magnetic resonance-electrical impedance tomography. In induced current MR-EIT surface electrodes...
متن کاملA Data-driven Edge-preserving D-bar Method for Electrical Impedance Tomography
In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 48 5 شماره
صفحات -
تاریخ انتشار 2003